ISOLATION OF VITAMIN D₃ FROM NATURAL MUMIYO

Sh. Kh. Khalikov and S. V. Alieva

UDC 615.326+543.544

The chemical composition of mumiyo is interesting because it has a wide spectrum of physiological activity.

Many curative properties are ascribed to mumiyo, among these are accelerated healing of bones after breaks and maintenance of phosphorus—calcium exchange [1, 2]. Studies of the vitamin-D activity of mumiyo have also appeared [3].

In order to prepare vitamin D (calciferol), we developed a chemical process to isolate from mumiyo Asil pure vitamin D_3 .

It was found that vitamin D may be bound to lipoproteins and proteins, forming a stable complex. Treatment with base or a dehydrating solvent system is necessary to separate it from the complex [4].

Therefore, we came to the conclusion that vitamin D in mumiyo is strongly complexed to phospholipids, proteins, amino acids, and other nitrogeneous bases. Mumiyo was disintegrated by dissolution in NaHCO₃ solution (1 M) and was treated with $C_6H_5CH_2OCOCl$ with vigorous stirring (Schotten—Baumann conditions) [5] in order to bind the components of the destroyed complex with released primary and secondary amines and other mucleophilic groups. Stirring was continued for 8-10 h. Extraction with ether removed the excess of $C_6H_5CH_2OCOCl$. The solution was acidified with HCl (6 N) until the pH was 3-3.5. The resulting oily product was extracted with CHCl₃. The CHCl₃ was removed. The residue was vacuum distilled to afford white crystals as thin needles with mp 83-85°C (Boetius stage, Germany).

Spraying the chromatograms with $SbCl_5$ solution gives a brownish-blue color typical of the D vitamins. The standard for comparison was vitamin D_2 .

Vitamin D₃ was analyzed by TLC on Silufol UV-254 plates, $R_f 0.84$ (*n*-butanol:acetic acid:water, 4:1:1), $R_f 0.66$ (pyridine:isoamyl alcohol, 1:1), $R_f 0.94$ (CH₃OH:H₂O, 98:2). Bands were developed using iodine vapor. The mass spectrum has strong peaks for ions with m/z 384 [C₂₇H₄₄O]⁺, 229 [C₁₆H₂₁O]⁺, 124 [C₈H₁₂O]⁺, 107 [C₈H₁₁]⁺, 105 [C₈H₉]⁺, 95 [C₇H₁₁]⁺, 93 [C₇H₉]⁺, 81 [C₆H₉]⁺, and 79 [C₆H₇]⁺.

The physicochemical properties of the compound isolated by us correspond with vitamin D₃ (cholecalciferol). UV spectrum (λ_{max} , 268 nm), [α]_D²⁰ +33° (*c* 1.3, CHCl₃) (Polomate-S, Germany).

REFERENCES

- 1. A. Sh. Shakirov, *History of Healing Breaks and Fractures According to Eastern Folk Medicine* [in Russian], Meditsina, Tashkent (1989).
- 2. V. E. Anisimov and R. M. Makirzyanova, Kazan. Med. Zh., No. 2, 65 (1983).
- 3. A. Sh. Shakirov, V. K. Bauman, E. V. Luzina, and M. Yu. Valinietse, *Dokl. Akad. Nauk Uzb. SSR*, No. 5, 45 (1986).
- 4. H. F. DeLuca, "Recent Advances in the Metabolism and Function of Vitamin D," Fed. Proc., 28, 1678 (1969).
- 5. M. Bergmann and L. Zervas, Ber. Dtsch. Chem. Ges. B, 65, 1192 (1932).

Tadzhik State National University, Dushanbe, e-mail: tgnu@mail.ru. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 332, July-August, 2003. Original article submitted Sept. 26, 2002.